天然橡膠支座(LNR)結構相對簡單,由純橡膠層構成,具有較低的水平剛度和較高的豎向剛度。在阻尼性能方面,其阻尼比通常在 5% - 8% 之間,這使得它在一定程度上能夠消耗地震能量。由于其造價相對較低,適用于 7 度以下設防區的一般性建筑,這些建筑對地震防護的要求相對較低,天然橡膠支座能夠在滿足基本抗震需求的同時,有效控制建設成本 。
橡膠支座作為連接橋梁、建筑上部結構與下部基礎的關鍵傳力部件,其性能直接關系到結構的安全、耐久與抗震能力。本文系統梳理了橡膠支座的核心技術要點,旨在為工程設計與施工提供清晰的參考。
建筑支座脫空現象成因分析:建筑支座脫空是工程中需重點防范的問題,主要成因包括:墩臺頂支座墊石標高控制不當,導致支座受力不均;墊石強度不足,受力后發生破碎,引發支座虛空;支座安裝溫度選擇不合理,梁體伸縮量超出設計范圍,支座無法復位,最終形成單側明顯半脫空。
板式橡膠支座的豎向極限拉應力和水平性能和橡膠支座關于橡膠材料老化及更換支座橡膠支座病害處理的方法很多,但應綜合考慮病害情況、結構形式和處理條件等因素合理選擇處理方案,常規處理方法主要有以下幾類:1更換處理:這是一種解決病害較徹底的辦法,對由于橡膠支座引起的對結構的影響和橡膠支座耐久性存在問題可較好解決。
安裝驗收:支座安裝前需檢查墊石標高、中心位置及水平度,臨時定位裝置應在正式工作前拆除。
建筑減隔震技術的落地效果高度依賴橡膠支座的選型、施工與運維管理,尤其是地震高發區域的建筑工程,需嚴格遵循技術規范,強化全過程質量管控。后續需持續深化橡膠支座性能研究,完善病害處置方案,為建筑抗震安全提供堅實保障。
可以看出:大部分功率流直接流入固定墩,只在活動墩自振頻率附近的頻率段,功率流分擔到該活動墩;隨著橡膠支座水平剛度的增加直接流入到固定墩的總功率流減小;對于活動墩,采用橡膠支座后,流入的功率流突然增加,并隨著支座水平剛度的增大,功率流峰值減小;功率流峰值在該墩的自振頻率附近,隨著支座水平剛度的增加,峰值點相應右移;加入橡膠支座后,增強了梁和橋墩的聯結,使得功率流得到分流,將原來固定墩承受的功率流,分擔到各個活動墩上。
在我國,除了有橡膠隔震支座技術的研究和應用外,還有砂墊層隔震、石墨墊層隔震、摩擦滑移支座隔震及橡膠隔震支座與摩擦滑移支座并聯復合隔震技術等。隔震技術的發展,可充分地適應各地區、城市及鄉村的不同要求。基礎隔震技術可作為地震防御區城市抗震防災的措施之一,應用于防災指揮中心、生命線工程、避難中心、救護中心以及居民住宅建筑的建設。可以預見,基礎隔震技術將在防震減災事業中起到巨大的積極作用。

頂升更換技術在橋梁運營期內,支座的更換是一項技術要求極高的作業。
如果特殊規格可由用戶提出協商生產梁底鋼板和不銹鋼板可配套供應。如果想讓建筑支座能夠有效正常使用,就應該定期檢查,發現問題趕緊解決問題。如果支承墊石標高差超過標準要求,必須使用標高調整水泥砂漿。如果支承墊石標高差距過大,可以用水泥砂漿進行調整。如果中墩相對較為剛勁,則采用定向或固定橡膠支座較為適宜。如何進行布置隔震層。在選用隔震產品時。應著重注意豎向地震作用載荷、水平剛度及水平位移的選用。如何確定使用隔震支座:如何確定需要頂升的梁體總重量,分析每個支點處的受力情況。如減(隔)震橡膠支座的技術要求、設計原則、制作的容許誤差、商標以及試驗方法等方而均作了相關規定。如結構的初始裂縫,在后期荷載作用時,有可能在壓應力作用下閉合,裂縫仍然存在,也是穩定的。如木板板縫之間預先施加的壓應力超過水壓引起的拉應力,木盆、木桶就不會開裂和漏水。如盆式橡膠橡膠支座或球面橡膠支座。如是要沒有這種隔力裝置,無疑,建筑很快就會塌陷。
橡膠隔震支座(普通橡膠隔震支座、鉛芯橡膠隔震支座和高阻尼橡膠隔震支座等)既具有較高的豎向承載能力、大水平位移能力和復位功能,同時普通橡膠支座與阻尼器、鉛芯橡膠支座或高阻尼橡膠支座配合使用時可提供較大阻尼,由橡膠隔震支座組成的隔震體系理論、試驗研究及工程應用已較為成熟,隔震效果顯著,是目前建筑隔震的主流產品,外已經建成的隔震建筑90%以上采用橡膠隔震支座,我國建筑隔震采用橡膠支座的比例更大。建筑橡膠隔震支座在我國的應用較為成熟,標準較為完善。目前已頒布的相關標準有:《建筑抗震設計規范》(GB50011-20、《疊層橡膠支座隔震技術規程》(CECS126:200、《建筑隔震橡膠支座》(JG119-2000)、《橡膠支座第1部分:隔震橡膠支座試驗方法》(GB20681-200、《橡膠支座第2部分建筑隔震橡膠支座》(GB20682-200、《橡膠支座第3部分:建筑隔震橡膠支座》(GB20683-200、《橡膠支座第4部分普通橡膠支座》(GB20684-200。正在編寫的標準有《建筑隔震施工與驗收規范》、《建筑隔震設計規范》等。
四氟滑板支座屬于活動支座,需與普通板式支座配套使用。相較于傳統四氟板式滑動橡膠支座 3%~6% 的摩阻系數,滾動式橡膠支座可將固定點的水平力至少降低至四氟板式滑動支座的 1/2,在減少結構受力、提升滑動靈活性方面優勢顯著。
板式橡膠支座的豎向極限拉應力和水平性能和橡膠支座關于橡膠材料老化及更換支座橡膠支座病害處理的方法很多,但應綜合考慮病害情況、結構形式和處理條件等因素合理選擇處理方案,常規處理方法主要有以下幾類:1更換處理:這是一種解決病害較徹底的辦法,對由于橡膠支座引起的對結構的影響和橡膠支座耐久性存在問題可較好解決。
盆式支座安裝前需額外做好準備:支承墊石按支座底板地腳螺栓間距與底柱規格預留螺栓孔;墊石頂面標高預留環氧砂漿墊層厚度;支座底板外墊石做坡面處理,防止積水。監理工程師需重點檢查與四氟板接觸的不銹鋼表面,禁止出現損傷、拉毛(避免增大摩擦系數或損壞四氟板),并確保不銹鋼板及四氟板硅脂坑清潔,硅脂填充飽滿,保障支座自由滑移。
焊接連接:對于采用焊接連接的盆式支座,應嚴格按照焊接工藝要求進行操作,保證焊縫質量。
安裝時需特別注意四氟板表面的清潔處理,儲脂槽應充分填充硅脂。同時,配套鋼板表面也必須保持潔凈,以避免增加支座摩擦力,影響其正常使用性能。

該支座通常由上、下兩部分組成,上部連接橋梁或建筑物,下部連接基礎或橋墩,中間通過鋼板和軸承實現連接,同時在鋼板和上、下部之間設置了摩擦體,從而形成一定的摩擦阻力。
為了有效抑制震動和噪聲的危害,震動控制技術被廣泛研究和應用。所謂的震動控制就是在設計或安裝中采取措施,以控制設備、系統所承受的震動,把設備及系統的震動強度控制在允許的范圍內。如果把產生激震力的物體稱為震源體,把要求降低震動強度的物體稱為減震體。主動隔震技術在隔震行業中屬于的技術。
橡膠支座主要系列:常見型號包括GJZ(公路建筑矩形支座)、GJZF4(公路建筑矩形四氟滑板支座)等。
云南省住建廳關于明確隔震減震建筑工程有關問題的通知中促進規定的第三條款項和第二項的規定,對于抗震設防烈度8度及以上區域的所有重點設防類、特殊設防類建筑工程(包括學校、幼兒園校舍和醫院醫療用房中屬于重點設防類和特殊設防類的建筑工程),只要滿足單體建筑面積100平方米以上,均應當采用隔震減震技術。
橡膠支座施工質量控制要點:橡膠支座施工需以科學技術指標為依據,明確施工方案前需從結構受力路徑、施工狀態兩大維度確立目標,實踐驗證表明,分六個目標項制定的施工方案具備可行性。為保障施工符合要求,吊梁前必須核查梁體、墩臺與板式橡膠支座的連接面平行度 —— 因恒載、汽車活載增加可能在支座安裝處形成傾角,故需確保支座上下安裝面盡可能平行,若存在偏差應及時修整,嚴禁落梁后采用填塞楔形塊的補救方式。
板式橡膠支座:由多層橡膠片與加勁鋼板鑲嵌、粘合壓制而成,允許剪切模量為 1.0MPa,允許剪切角正切值 tanα≤0.7,在該范圍內可保持穩定使用性能;當位移量較大時,可通過在橡膠板頂面貼覆聚四氟乙烯板、梁底貼覆不銹鋼薄板,利用兩者低摩擦特性滿足大位移需求,即四氟乙烯橡膠支座。
疊層橡膠隔震支座施工及驗收核心要求:施工中需確保支座上下各部件縱橫向精準對中;若安裝溫度與設計溫度存在差異,橡膠支座縱向上下部件錯開距離需與計算值完全一致。連續建筑實施體系轉換時,橡膠支座與硫磺水泥漿塊間必須采取隔熱措施,防止填充四氟乙烯板和橡膠塊因高溫受損。
支座的正確安裝、更換及與整體結構的協調是保證其長期正常工作的關鍵環節。

隔震技術應用工程實例:例如東京目白花園建筑群采用的人工場地隔震技術,將多棟高層建筑建于一個大型的整體隔震基礎之上。
上下鋼板:支持建筑物結構的上部和下部鋼板,與建筑物的上部和下部結構連接。
性能驗證與參數研究支座的力學性能是其核心價值所在。
對于普通型建筑支座適用于跨度小于30M、位移量較小的建筑.不同的平面形狀適用于不同的橋跨結構,正交建筑用矩形支座;曲線橋、斜交橋及圓柱墩橋用圓形支座.對于四氟乙烯板式橡膠支座適用于大跨度、多跨連續、簡支梁連續板等結構的大位移量建筑.它還可用作連續梁頂推及T型梁橫移中的滑塊.矩形、圓形四氟板式橡膠支座的應用非別與矩形、圓形普通板式橡膠支座相同圓型扳式橡膠支座的產品特性1990年交通部公路規劃設計院委托鐵道部科學研究院對100多塊圓型板式橡膠支座,進行了全面系統的試驗研究。
鋼件防腐升級:外露鋼板除涂刷環氧富鋅底漆(80μm)+ 聚氨酯面漆(80μm)外,預埋件與混凝土接觸部位需涂刷水泥基滲透結晶型防水涂料(厚度≥1.5mm),防止混凝土碳化導致鋼件銹蝕。
可以看出:大部分功率流直接流入固定墩,只在活動墩自振頻率附近的頻率段,功率流分擔到該活動墩;隨著橡膠支座水平剛度的增加直接流入到固定墩的總功率流減小;對于活動墩,采用橡膠支座后,流入的功率流突然增加,并隨著支座水平剛度的增大,功率流峰值減小;功率流峰值在該墩的自振頻率附近,隨著支座水平剛度的增加,峰值點相應右移;加入橡膠支座后,增強了梁和橋墩的聯結,使得功率流得到分流,將原來固定墩承受的功率流,分擔到各個活動墩上。
橡膠支座的主要力學性能指標是評估其工程適用性的核心依據,主要包括:抗壓彈性模量:反映支座在壓力作用下的變形特性;抗剪彈性模量:表征支座的剪切變形性能;水平抗剪傾角:體現支座的抗傾覆能力;極限抗壓強度:確定支座的最大承載能力;豎向極限拉應力:通過拉伸試驗確定支座的抗拉性能。
GPZ 系列盆式橡膠支座憑借大承載、大位移、大轉角的技術特點,適用于跨度較大、荷載較重、位移需求顯著的大型建筑與橋梁工程,尤其適配對支座性能要求嚴苛的復雜結構場景。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312