其他消能支座:如通過在支座頂板與橡膠板上方的鋼襯板之間設置特殊界面(干摩擦面、阻尼材料等),在地震等水平力作用下通過相對滑動或變形來消耗能量,保護主體結構。
板式橡膠支座由多層橡膠與鋼板復合硫化而成,具備構造簡單、安裝便捷、成本可控等優點,適用于中小跨徑的結構。該類型支座可均勻分散水平力,多用于固定與活動支座布置,需結合具體位移及轉角驗算確定。
我國建筑支座型式多樣,主要包括簡易支座、鋼支座、鋼筋混凝土支座、橡膠支座及特種支座(如減震支座、拉力支座等)。其中,橡膠支座因構造簡單、安裝便捷、成本低廉、養護方便等優勢被廣泛應用。橡膠支座主要分為板式橡膠支座、盆式橡膠支座和四氟滑板式橡膠支座:依靠橡膠層與加勁鋼板疊合結構提供承壓與剪切變形能力,適用于小跨徑橋梁。
性能設計方法創新基于能量平衡理念,在不改變橋墩原有剛度控制設計理念的前提下,通過優化減隔震支座參數,提出一種無需迭代的性能設計方法(EQUVILANT ENERGY BASED DESIGN PROCEDURE,EEDP),可精準實現建筑預期性能目標,提升設計效率與可靠性。
橡膠墊隔震(以隔震橡膠支座為核心)通過支座的彈性變形與耗能特性實現減震,具有以下優勢:隔震橡膠支座可通過鉛芯、高阻尼橡膠等材料的耗能作用,吸收地震能量;支座的剪切變形可適應建筑的水平位移,減少上部結構的地震響應,即使上部結構存在質心偏心(如各層質心不重合導致的扭轉反應),隔震層也能有效削弱這種偏心效應。
四氟滑板式橡膠支座:通過四氟乙烯板與不銹鋼板相對滑動適應梁體位移,位移量較大,常用于溫度變形顯著的橋梁。 此外,隔震支座采用薄橡膠與鋼板交替疊合的整體硫化結構,可降低地震反應70%~90%,顯著提升結構抗震性能。
在壓應力限值方面,根據建筑的抗震設防類別,甲類建筑對安全性要求極高,其隔震橡膠支座的壓應力需嚴格控制在≤10MPa,以確保在極端地震情況下,支座不會因壓力過大而發生塑性變形或破壞,從而保障建筑結構的安全;乙類建筑的壓應力限值≤12MPa,在滿足一定安全儲備的同時,兼顧了工程的經濟性和實用性;丙類建筑的壓應力限值相對放寬至≤15MPa,適用于一般性建筑,在保證基本抗震性能的前提下,合理控制成本 。
耐久性與老化問題:板式橡膠支座的使用壽命(老化問題) 是工程界關注的焦點。其壽命主要受橡膠材料、生產工藝及使用環境影響。在氣候炎熱地區,應注重其抗熱氧老化性能;在寒冷地區,則需關注其低溫脆性。優質的配方和穩定的硫化工藝是保證支座長達數十年使用壽命的基礎。

建筑結構在外界特定溫度環境,梁體內部溫度分布不均勻,梁體端部在材料熱性能的變化下產生角變位。建筑盆式橡膠支座防水層表面不應有積水和滲水的現象。建筑上部為連續結構的,梁體頂升時的差異變位會產生上部結構的二次內力,影響粱體結構的安全。建筑上之所以使用橡膠支座,是因為橡膠支座具有它獨特的優點,以使其與建筑非常的匹配。建筑伸縮縫在安裝前應根據實際溫度按照紙設計中的計算公式調整組裝定位值,用專用卡具將其固定。建筑橡膠支座是在橋跨結構與橋墩或橋臺的支承處設置的傳力裝置。建筑橡膠支座系統作為高速鐵路建筑的重要組成部分,對建筑結構設計有著非常重要的影響。建筑支座按其作用可分為固定支座和活動支座兩大類。建筑支座必須滿足以下功能要求。建筑支座不能正常滑動:墩頂落有大量的混凝土垃圾,不銹鋼板銹蝕,摩阻力變大。
橡膠支座性能參數計算與影響分析水平剛度計算方法利用滯回曲線,板式橡膠支座水平剛度可按以下公式計算:\(K_{EQ}=(Q_+ - Q_-)/(U_+ - U_-)\)式中:\(K_{EQ}\)為橡膠支座水平剛度;\(U_+\)為最大水平正位移;\(U_-\)為最大水平負位移;\(Q_+\)為對應\(U_+\)的水平剪力;\(Q_-\)為對應\(U_-\)的水平剪力。
選用建筑支座時,必須進行綜合考量,主要因素包括:建筑跨徑與結構形式:不同跨徑和結構(梁橋、拱橋、索橋等)對支座的承載、位移、轉動能力要求各異。
從產地來看,這種支座主要由位于河北省衡水的廠家生產。衡水地區有多家企業專門從事支座的生產和供應,這些企業提供定制化的服務,能夠根據客戶的需求提供不同規格的J4Q鉛芯隔震橡膠支座。
在隔震結構設計中,按照規范公式考慮滑板支座對板式支座地震力的影響時,可基于靜力方法進行分析,并假定全部滑板支座同時發生滑動,這是目前工程設計中常用的簡化計算方法。
球冠板式橡膠支座:在板式支座頂部采用橡膠制成球形表面,球冠中心橡膠厚度為 4-8mm。除具備普通板式橡膠支座的全部功能外,可通過球冠結構調節受力狀況,適用于縱橫坡度為 2%-4%的立交橋及高架橋,能使梁體與支座接觸面的中心趨于支座幾何中心,優優化受力傳遞;
水平變形能力是衡量隔震橡膠支座抗震性能的另一個重要指標。通常要求設計剪切應變達到 250%,這意味著支座能夠承受較大的水平變形。根據這一指標,位移量可以通過支座高度 ×2.5 來計算,以確保在地震發生時,支座能夠通過自身的水平變形有效地吸收和分散地震能量。同時,為了保證建筑結構在地震后的正常使用,要求震后 24 小時內,支座的復位偏差≤5mm,確保建筑結構能夠迅速恢復到穩定狀態,減少地震對建筑使用功能的影響 。
在現代建筑抗震領域,隔震技術憑借其獨特的力學機制,為建筑結構在地震中的安全提供了可靠保障。其核心思路是在建筑基礎與上部結構之間巧妙設置柔性隔震層,這一設計宛如為建筑安裝了一個強大的 “緩沖墊”。其中,橡膠支座是隔震層的關鍵部件,通過自身的彈性變形來延長結構的自振周期。通常情況下,普通建筑結構的自振周期較短,而設置橡膠支座后,結構自振周期可延長至 2 - 3 秒。這樣一來,地震能量在傳遞過程中,由于周期的改變,難以與建筑結構產生共振,從而有效減少了地震能量向上部結構的傳遞 。

隔震系統設計隔震層位置選擇是隔震工程設計的首要決策,結構專業可在建筑方案階段參與并發揮重要作用。該選擇不僅影響結構自身設計,還對建筑、設備等相關專業產生深遠影響,直接關聯工程造價與技術難度,需綜合多方面因素全面論證后確定。
關于橡膠支座,特別是氯丁橡膠支座的設計使用壽命,國際工程界存在不同觀點與經驗。有資深工程師基于長期觀測與材料研究,認為在正常使用環境下,其壽命預期至少在50年以上,通過優化設計與材料改良,甚至有望達到100年。
地震作為嚴重影響人類社會的自然災害,始終是建筑工程領域重點攻克的課題。傳統抗震技術主要通過增強結構強度和剛度來抵抗地震作用,而現代隔震技術則通過隔離地震能量傳遞途徑,顯著降低地震對上部結構的影響。在眾多隔震系統中,隔震橡膠支座已成為研究和應用的主流方向,在日本、美國等多地震國家得到廣泛應用,并經過多次強烈地震的實際考驗,證實在高烈度地震區具有良好的隔震效果。
LRB系列高阻尼隔震橡膠支座在大震后發生大變形時不發生失穩,復位能力強,殘余變形極小,無需更換;表面覆蓋有橡膠保護層,保護內部橡膠不受臭氧、紫外線影響,具有更好的耐老化性,50年等效阻尼比降低不到2%;
隔震系統的位移能力不足。依據AASHTO標準驗算可得,該高架橋隔震系統的大位移為820MM。而原設計的隔震系統的極限位移僅有210MM(滑動支座)——480MM(屈服耗能裝置的極限位移)。通過利用博盧和達茲兩處地震觀測站分別對地震場地進行了地面運動情況的觀測,并模擬了近斷層的運動情況,得到的峰值位移應為1400MM。這巨大的差別說明了該設計不僅非常不合理(隔震的兩部分位移能力不同),也遠遠不能滿足達茲近場大地震的要求。
在進行建筑橡膠支座修補或替換時要考慮當地天氣因素從而確定建筑支座修補工期.在靜水中浸泡其整體性完好不解體。在靜態結構的受力分析中,通常須預先求出建筑支座反力,再進行內力計算。在框架梁落梁防止壓力穩定,部分或初始剪切變形,我們可以參照鐵路建筑板式橡膠支座規格表。在了解了支座的基礎上,我們可以更加輕松地認識橡膠支座。在樓上居住的職工,只是感到輕微的晃動,而相鄰的一幢常規抗震樓只有四層高。在滿足上述要求的同時,支座還必須保證橋跨結構在墩臺上的位置充分固定,不致滑落。在盆式橡膠支座設計位置處劃出中心線,同時在盆式橡膠支座頂、底板上也標出中心線。
隔震支座的核心設計特點是 “水平柔性、豎向承重”,其豎向剛度顯著低于混凝土構件,具體對比需修正單位偏差并補充計算依據:
該支座通常由上、下兩部分組成,上部連接橋梁或建筑物,下部連接基礎或橋墩,中間通過鋼板和軸承實現連接,同時在鋼板和上、下部之間設置了摩擦體,從而形成一定的摩擦阻力。

盆式橡膠支座:將橡膠體密封于鋼盆內,承載能力高,轉動性能靈活,適用于大跨徑或重載工程。
從產地來看,這種支座主要由位于河北省衡水的廠家生產。衡水地區有多家企業專門從事支座的生產和供應,這些企業提供定制化的服務,能夠根據客戶的需求提供不同規格的J4Q鉛芯隔震橡膠支座。
網架支座選用:合理的支座結構形式與技術指標對節點安全至關重要,正確選用有利于提升工程質量并推動設計發展。
建筑隔震橡膠支座檢驗分型式檢驗和出廠檢驗兩類。制造廠提供工程應用的隔震橡膠支座新產品(新種類、新規格、新型號)進行認證鑒定時,或已有支座產品的規格、型號、結構、材料、工藝方法等有較大改變時,應進行型式檢驗,并提供型式檢驗報告。隔震橡膠支座產品在使用前應由檢測部門進行質量控制試驗,檢驗合格并附合格證書,方可使用。參考《建筑隔震橡膠支座》JG/T118-2018,建筑隔震橡膠支座應進行出廠檢驗和型式檢驗。型式檢驗合格后方可進行生產。每個隔震橡膠支座均應進行出廠檢驗,出廠檢驗應由制造廠質檢部門或獨立的第三方檢測機構檢驗,檢驗合格方準出廠。、新產品的試制、定型、鑒定;、當原料、結構、工藝等有較大改變。
建筑支座作為連接上部結構與墩臺的核心受力部件,其核心功能是將上部結構的恒載、活載等荷載順適、安全地傳遞至墩臺,同時滿足結構在溫度變化、混凝土收縮徐變及地震作用下的轉動與位移需求,確保結構實際受力與計算簡圖一致,保障建筑整體穩定性和耐久性。其中,橡膠支座憑借結構簡單、適應性強、安裝維護便捷等優勢,已成為現代建筑與橋梁工程中的主流選擇,其技術應用與質量控制直接影響工程結構的安全性能與使用壽命。
建筑結構中,簡諧激勵力 FI (Jω) 依次通過梁、支座、墩柱等構件傳遞,最終以 FO (Jω) 形式傳遞至基礎,該傳遞過程可類比于電路中電流的流動;各構件兩端的速度變化量類比于電路中的電壓;YA、Y…、YN 分別為梁體(質量、剛度、阻尼)、各橡膠支座(剛度、阻尼)、各墩柱(質量、剛度、阻尼)的導納,類比于電路中的電阻,為支座力學性能分析提供了直觀的類比模型。
球冠圓板式橡膠支座:在普通板式支座基礎上增設球冠襯板,能更好地適應梁端的轉動,改善受力狀況,使支座在平面上各向同性,有效調節支撐受力狀態。
盆式橡膠支座的頂板和底板可用焊接或錨固螺栓栓接在梁體底面和墩臺頂面的預埋鋼板上。盆式橡膠支座的防塵裝置應嚴格按照設計紙的要求制造和安裝。盆式橡膠支座的更換要求:盆式橡膠支座是在板式橡膠支座的基礎上,將鋼部件與橡膠部件組合而成的一種橡膠支座。盆式橡膠支座用螺栓采用多元合金共滲或鋅鎘鍍層(即達克洛)等方法進行防護。盆式橡膠支座與球型支座的概述:盆式建筑支座是鋼構件與橡膠組合而成的新型建筑支座。盆式橡膠支座質量檢測項目主要包括:支座外觀、幾何尺寸、力學性能、解剖檢驗、膠料力學性能等。盆式支座就位后用斷續焊接將支座頂、底板與預埋鋼板焊接在一起。盆式支座在間歇焊接將支持頂,底板與預埋鋼板焊接在一起。膨脹螺栓的規格要根據實際的不均勻沉降差確定,螺栓位置一定要準確,預埋一定要穩固。膨脹速度緩慢,抗水壓能力強,適用于雨季和水豐富的施工工地使用。拼價格我們可以,拼質量我們也是杠杠的。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312