隔震橡膠支座:通過分層橡膠與鋼板粘合形成的疊層結構,延長結構自振周期并消耗地震能量。實踐證實(如1994年洛杉磯地震、1995年日本阪神地震),采用此類支座的建筑(如USC大學醫院)在地震中保持功能完好,內部設備僅受表面損傷。
近年來,交通基礎設施建設領域投資節奏有所調整,工程橡膠行業產能過剩問題逐步顯現,市場競爭日趨激烈。在此背景下,工程橡膠支座作為交通工程與建筑工程中的關鍵承重構件,其產品性能與安裝質量直接影響結構穩定性和使用壽命,需嚴格滿足各項技術指標要求。
對支座常見病害的識別和性能的深入分析,是進行橋梁養護和優化設計的基礎。
隔震技術應用設計原則:采用隔震設計的建筑,其最終實現的抗震性能不應低于按傳統抗震設計方法所能達到的性能水平。
為確保施工過程中建筑結構及相鄰設施的安全,在實施支座更換作業前,必須對建筑結構進行詳盡調研與評估。制定基礎施工方案時,需重點掌握以下核心信息:結構受力狀態與荷載分布情況;原支座的服役狀況及損壞機理;施工現場的空間條件與作業環境;更換過程中的臨時支撐與安全保障措施。
基礎隔震(主流形式):隔震層設于基礎與上部結構之間,通過橡膠支座 + 阻尼裝置吸收地震能量,適用于多數建筑(如云南公共建筑)。
橡膠支座的剪切角α正切值是重要技術指標。不計制動力時,tanα不應大于0.5;計入制動力時,tanα不應大于0.7。所有橡膠支座的計算和驗算均應滿足相關規范的技術要求。支座的外觀尺寸測量通常采用鋼直尺或相應精度的量具,厚度尺寸則使用游標卡尺或同等精度量具進行測量,需取外側不同方向四個點的實測平均值。
固定支座主要承擔豎向承載和豎向轉動功能,豎向承載力覆蓋 800KN - 60000KN 的范圍,轉角能力≥0.01rad 。由于其不具備水平位移能力,因此常用于墩臺與橋梁結構的固定連接部位,如同堅固的 “錨點”,將橋梁牢牢地固定在基礎上,確保整個結構在豎向荷載和轉動作用下的穩定性 。

外建筑隔震橡膠支座應用基本情況隔震技術不僅可以保證結構的整體安全,防止非結構部件的破壞,避免建筑物內部裝修、室內設備的損壞以及由此引起的次生災害,并且隔震橡膠支座技術應用方便、隔震效果明顯,該技術又對國計民生具有重要的意義,所以目前,上已有20多個已開始在建筑物中使用橡膠墊隔震技術,其中日本、新西蘭、美國、意大利、等應用實例較多,所據調查,到目前為止,19層,已建近700幢,美國29層,已建近100幢,日本50層,已建近3000幢,隔震建筑應用,已建近25座美國已建近35座,日本已建近800座幢。
橡膠支座作為連接橋梁、建筑等上部結構與下部墩臺的關鍵部件,不僅承擔傳遞荷載的核心功能,更能通過其獨特的彈性與變形能力,有效適應溫度變化、混凝土收縮徐變以及地震等動力作用引起的位移與轉動。其技術發展至今,已形成板式橡膠支座、盆式橡膠支座、滑板支座、隔震支座等多種類型,共同構成了現代工程結構安全與耐久的重要保障。
隨著現代科技的發展,為了有效提高建筑物抗震能力,科學家們開始發展隔震、減震與結構控制技術。在堅固基礎上的結構在大地震作用下猶如一個“放大器”,一般會放大結構的振動響應,造成上部結構的破壞。傳統抗震技術采用的是通過加大結構斷面尺寸和配筋,使結構變得“剛強”的方式來抗御地震作用,或者容許結構構件有損壞,利用構件損壞后的韌性(結構進入非彈性狀態)來降低地震作用,使結構“裂而不倒”。前一種“硬抗”方法不經濟,有時也難以抵御強烈地震;后一種增加韌性的方法,在大震時,雖然結構不會倒塌,但是無法控制。所以20世紀70年代后期開始,科學家們發展了隔震與結構消能減震技術來增強結構的抗震能力。
橡膠支座是建筑結構體系中的關鍵傳力組件,承擔著連接上部梁體與下部墩臺的核心作用。其核心功能在于將橋跨結構的支承反力可靠地傳遞至墩臺,并確保建筑結構在承受荷載、溫度變化等因素影響時,能夠滿足設計所要求的靜力條件與變形需求,其性能的優劣直接關系到建筑結構的耐久性、安全性與行車舒適度。
在地震不能被準確、及時預報的前提下,工程技術是防震減災有效、現實的手段。因此對建筑、建筑進行抗震設計是衡量一國造橋技術的重要指標,而減隔震技術作為一種有效的建筑物抗震技術,逐漸成為大型建筑結構抗震設計的重要選項。國外發達應用減隔震技術較早,如美國早在1984年就利用基礎隔震技術建造建筑,日本減隔震技術也走在前列。除防御地震震動外,減隔震裝置也可用于抵御建筑結構熱脹冷縮變形和荷載的變化,提高建筑結構的安全性和穩定性。
施工前期技術準備圖紙會審:重點審查支座型號、安裝位置、連接方式與結構匹配性(如拉壓支座錨筋長度是否滿足抗拉要求),解決圖紙矛盾(如支座位移量與梁體變形不匹配);技術交底:向施工人員明確工藝流程(如支座組裝順序、砂漿灌注時機)、質量標準(如縫隙控制、平整度要求)及應急措施(如支座偏位調整方法),確保操作統一。
曲率半徑:曲率半徑過大可能導致橋板大幅度晃動,增加落梁的概率;曲率半徑過小則會使減震球擺的晃動太小,不利于消耗地震能量。在高速鐵路橋梁摩擦擺支座隔震設計中,應當考慮曲率半徑對梁體位移、支座殘余位移和橋墩內力的影響,再因地制宜選擇合適的曲率半徑。
現代隔震與消能減震設計通過將非線性、大變形集中到隔震支座和阻尼器上,既簡化了結構分析方法,也提高了抗震設計的可靠性。隔震層作為關鍵環節,其設置位置多樣,基礎隔震作為廣泛應用的技術,主要在基礎與結構間安裝橡膠彈性墊或摩擦滑動承重座等緩沖裝置。

板式橡膠支座:由多層薄鋼板與天然橡膠鑲嵌、粘合、硫化而成。可進一步細分為:
這種支座通常由上下固定板、滑動面、摩擦材料和連接件等部分組成。當地震發生時,上部結構相對于下部基礎發生位移,摩擦擺支座允許這種位移發生,并通過滑動界面摩擦消耗地震能量,從而減小地震對上部結構的影響。
普通板式橡膠支座:適用于中、小跨度建筑,結構簡單。
預埋固定是連接工藝的第一步,下支墩預埋套筒與錨筋的焊接質量至關重要。焊接牢固程度需達到焊縫高度≥8mm,這一標準是基于對焊接接頭力學性能的嚴格要求確定的。在實際施工中,采用專業的焊接設備和技術熟練的焊工進行操作,并通過超聲波探傷等無損檢測手段對焊縫質量進行嚴格檢測,確保焊接接頭的強度和可靠性,能夠在地震等極端情況下承受巨大的拉力和剪力 。上預埋鋼板與支座頂面通過螺栓連接,扭矩偏差≤±5% 設計值,通過精確控制螺栓扭矩,保證連接的緊密性和穩定性,確保在地震時能夠有效地傳遞水平力 。
橡膠支座作為連接上部與下部結構的關鍵構件,核心價值體現在兩方面:減震防護:通過橡膠彈性與滑移副設計,削弱地震、車輛振動對結構的影響,如隔震支座可使上部結構地震響應降低 60%-80%;變形適應:適應溫度變化(熱脹冷縮)、荷載撓曲(梁端轉動)引起的結構變形,避免附加應力導致的構件開裂。
規范量化要求:依據《建筑抗震設計規范》GB50011 第 12.2.15 條:多層建筑:需計算 “隔震與非隔震各層層間剪力的最大比值”,控制≤2.5;高層建筑:額外計算 “隔震與非隔震各層傾覆力矩的最大比值”,取與層間剪力比值的較大值,控制≤3.0。
支座伸縮裝置特性GQF-CD 型、GQF-F 型、GQF-E 型、GQF-L 型伸縮裝置均由兩根邊梁(對應型號的熱軋異型鋼材)與橡膠密封帶組成,結構簡單、安裝方便,適用于伸縮量為 0~80mm 的建筑支座配套使用。其中,鋼質邊梁采用 16Mn 精軋制成,錨固板及 Φ16 錨固件為核心受力構件,保障伸縮裝置與支座的連接可靠性。
形狀系數是衡量橡膠支座性能的關鍵參數。第一形狀系數S1主要體現薄鋼板對橡膠板的約束效果,第二形狀系數S2則反映橡膠支座在受壓時的穩定性能。根據國際研究成果和工程實踐經驗,一般要求S1≥15,S2=3~6。

建筑摩擦擺隔震支座是一種利用單擺原理來延長結構自振周期,利用球面接觸摩擦滑動來消耗能量的減隔震裝置。它通常設置在上部結構(如建筑物的梁、板等)與下部結構(如橋墩、基礎等)之間,通過“軟連接”的方式,減小傳遞到結構中的側向力和水平振動,使結構在地震下免受破壞。
J4Q鉛芯隔震橡膠支座是一種用于建筑和橋梁的隔震裝置,主要應用于需要提高結構抗震性能的場合。這種支座通過其內部的鉛芯和橡膠材料的特性,能夠在地震發生時吸收和分散地震力,從而減少結構物的振動和損壞。鉛芯隔震橡膠支座的設計旨在提供有效的隔震效果,保護建筑和橋梁在地震等外力作用下的安全。
進行橡膠支座更換時要求的資源配置①勞動力資源配置:指揮組3人、技術組4人、安全組5人、作業組20人主要施工設備及材料:YBD250-18扁、千斤頂12臺、高壓油管20根、共60MSYB-2油泵14臺、油箱5只、對講機6臺、游標卡尺9把、各型鋼墊板及硅脂若干、耐高壓油若干、圓形板式橡膠支座(φ280MM,厚84MM)8個(施工過程中,不得封閉交通,但為安全起見,可以限量通行;施工過程中,保證建筑任何部位不得有絲毫附加損壞;舊支座拆除和新支座安裝(安裝前涂滿硅脂),工序緊湊,時間不得超過3H;需要復位的舊支座必須拿出清理干凈,并涂滿硅脂后才能進行復位,經更換、復位后的支座,正交方向中線偏位不得大于2MM。
在預制梁架設或現澆混凝土施工完成后,監理單位應重點核查支座的臨時固定裝置是否已拆除、梁底是否存在殘留雜物、支座防塵保護裝置是否安裝到位等關鍵項目。
針對夏季高溫與地震疊加產生的力疊加問題,需在設計階段充分考慮溫度應力與地震力的組合作用,選擇適配的支座類型(如高阻尼橡膠支座),并搭配阻尼裝置、限位裝置等輔助構件,提升結構對疊加力的抵御能力。
智能支座系統的出現,為建筑和橋梁結構的安全監測與維護帶來了革命性的變化。集成形狀記憶合金(SMA)元件的智能支座,具備卓越的主動復位功能。在地震等災害發生后,SMA 元件能夠迅速響應,通過自身的形狀變化,使支座自動復位,復位精度可達≤2mm,確保結構在震后能夠盡快恢復正常使用狀態 。
必要時,應提出結構檢測要求和特殊節點的試驗要求。必要時繪制墻體立面圖;畢竟相對于企業的發展來說,人身安全才是更為關鍵和重要的問題。避免由于起頂不均勻而造成橋面的剪切破壞。編寫操作工藝和要點,培訓操作人員;變形部分接縫的圓腔相接處是粘接的薄弱部位,因此采用玻璃膠封堵內腔,以防此處漏水。變形縫內宜填充泡沫塑料或瀝青麻絲,上部填放襯墊材料,并用封蓋,頂部加扣混凝土蓋板。變形縫一側的混凝土,達到設計強度30%以上后,板式橡膠支座方能拆模再澆筑另一側混凝土。標定下預埋板標高及軸線位置,綁扎下部構件的鋼筋網片,放置下部預埋鋼板在設計位置并固定;標明地溝、地坑和已定設備基礎的平面位置、尺寸、標高,預留孔與預埋件的位置、尺寸、標高。標準跨徑1<40M以內的建筑,一般可采用板式橡膠支座。標準跨徑20M以內的建筑,一般可采用板式橡膠支座。
建筑支座脫空現象成因分析:建筑支座脫空是工程中需重點防范的問題,主要成因包括:墩臺頂支座墊石標高控制不當,導致支座受力不均;墊石強度不足,受力后發生破碎,引發支座虛空;支座安裝溫度選擇不合理,梁體伸縮量超出設計范圍,支座無法復位,最終形成單側明顯半脫空。
FPSII-10000-300-3.48摩擦擺隔震支座
FPSII-9000-300-3.48摩擦擺隔震支座
FPSII-8000-300-3.48摩擦擺隔震支座
FPSII-7000-300-3.48摩擦擺隔震支座
FPSII-6000-300-3.48摩擦擺隔震支座
FPSII-5000-300-3.48摩擦擺隔震支座
FPSII-4000-300-3.48摩擦擺隔震支座
FPSII-3000-300-3.48摩擦擺隔震支座
FPSII-2000-300-3.48摩擦擺隔震支座
FPSII-1000-300-3.48摩擦擺隔震支座
摩擦擺隔震支座廠家
建筑摩擦擺減隔震支座24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312