隔震橡膠支座的核心原理是在建筑上部結構與基礎之間設置柔性隔震層,通過支座的水平變形來延長結構自振周期,同時利用阻尼特性消耗地震能量。這種設計思路將抗震對象從考慮整個結構物的復雜抗震措施轉變為專注于隔震裝置的性能優化,使得結構物本身的設計與施工可參照一般非地震區的標準執行,極大簡化了設計與施工流程。
二、鉛芯抗震橡膠支座的優點及主要性能要求抗震橡膠支座支座的優點:鉛芯抗震橡膠支座除了本身的抗震力學性能滿足抗震設計及使用要求外,還具備以下優點:一是鉛芯抗震橡膠支座耐久性好,抗低周期疲勞性能、抗熱空氣老化、抗臭氧老化、耐酸性、耐水性均較好,其壽命可達60~80年[1],期間的抗震力學性能不會發生明顯變化,也就是說在60年之內不會影響使用,可見,與鉛芯物具有同等壽命。
橡膠支座的老化性能豎向剛度先測定被試橡膠支座的豎向剛度、水平剛度、等效黏滯阻尼比;再將橡膠支座置于100℃的恒溫箱內185H(或相當于20℃X60年的等效溫度和等效時間)后取出,冷卻至自然室溫,再重新測定橡膠支座的豎向剛度、水平剛度、等效黏滯阻尼比及水平極限變形能力。
天然橡膠支座(LNR)結構相對簡單,由純橡膠層構成,具有較低的水平剛度和較高的豎向剛度。在阻尼性能方面,其阻尼比通常在 5% - 8% 之間,這使得它在一定程度上能夠消耗地震能量。由于其造價相對較低,適用于 7 度以下設防區的一般性建筑,這些建筑對地震防護的要求相對較低,天然橡膠支座能夠在滿足基本抗震需求的同時,有效控制建設成本 。
外建筑隔震橡膠支座應用基本情況隔震技術不僅可以保證結構的整體安全,防止非結構部件的破壞,避免建筑物內部裝修、室內設備的損壞以及由此引起的次生災害,并且隔震橡膠支座技術應用方便、隔震效果明顯,該技術又對國計民生具有重要的意義,所以目前,上已有20多個已開始在建筑物中使用橡膠墊隔震技術,其中日本、新西蘭、美國、意大利、等應用實例較多,所據調查,到目前為止,19層,已建近700幢,美國29層,已建近100幢,日本50層,已建近3000幢,隔震建筑應用,已建近25座美國已建近35座,日本已建近800座幢。
FPS摩擦擺支座是一種有效的結構隔震裝置,能夠顯著提高建筑物和橋梁在地震時的抗震性能,保護人們的生命和財產安全。
支座安裝平面必須與支座的滑動平面或滾動平面平行,其平行度偏差不宜超過2‰。
采用橡膠隔震支座的建筑在設計、施工方面與傳統建筑差別很小,普通的設計和施工單位均能勝任。從目前的工程實踐來看,隔震建筑相比傳統抗震建筑,展現出顯著的社會效益與經濟效益:不僅能更好地保障建筑本體和內部人員財產的安全,還能有效減少因建筑功能中斷帶來的間接損失,是提升工程抗震韌性的重要發展方向。

施工記錄與監測:對于鉛芯橡膠支座等重要部件,應做好詳盡的安裝過程施工記錄。在上部結構后續施工中,建議每完成一層,就對橡膠支座的豎向變形進行一次觀測,以監控其長期行為。
施工方便:安裝簡便,能夠快速適應結構變化。
防偏差措施:避免同一梁體設置多個支座,防止壓縮不均;墩臺帽邊緣宜處理為圓弧或斜坡,減少應力集中。
橡膠支座施工完成后維護工作及其他功能部件的介紹橡膠支座安裝完畢后,如果發現以下情況,應該及時做出調整:個別支座落空,出現不均勻受力支座發生較大的初始剪切變形,造成支座偏壓嚴重,局部受壓,側面鼓出異常,而局部落空調整方法一般用千斤頂頂起梁端,在支座上下表面鋪涂一層水泥砂漿。
隔震原理分類:根據建筑物不同位置,隔震原理可分為四類,通過差異化隔震設計實現結構抗震保護。
工程結構減震控制是工程結構抗震的一個新領域,包括隔震、消能減震、各種被動控制、主動控制、混合控制等。它不是采用加強結構的傳統抗震方法來提高結構的抗震抗風能力,而是通過調整改變結構動力參數的途徑,以明顯衰減結構的震(振)動反應,有效地保護結構內部設施在強地震中的安全,或在其它外干擾力作用下使結構滿足更高的減震(振)要求。它已越來越廣泛地應用在工程結構的抗震、抗風、減震(振)、降噪等領域中,顯示出明顯的減震(振)效果,取得了明顯的社會效益、技術進步效益和經濟效益,引起外學術界、工程界的極大關注,它為工程結構的減震(振)提供了一條嶄新的途徑。在很多情況下,它比傳統的抗震方法更加有效、合理和經濟。隨著現代化社會的發展,人們對抗震、減震、抗風要求的日益提高,工程結構減震控制技術將會越來越廣泛地被應用。
支承墊石通用要求:橡膠支座安裝需設置支承墊石,混凝土強度需符合設計標準,頂面標高準確、表面平整;平坡工況下,同一片梁兩端支承墊石水平面需保持同一平面,相對誤差≤3mm,避免支座偏歪、受力不均或脫空。當建筑縱坡坡度≤1% 時,板式橡膠支座可直接設于墩臺,但需考慮縱坡影響調整支座厚度。
設計前期:充分調研建筑物所處環境特點,嚴格依據規范確定屋面防水等級及設防要求;

四氟滑板式橡膠支座表面保護:必須保證四氟板與配套不銹鋼接觸面的清潔與完好,避免任何形式的損傷或拉毛。
隨著材料科學的進步,新型橡膠材料如聚醚聚氨酯橡膠正在逐步替代傳統的氯丁橡膠和天然橡膠材料,推動了圓盤式橡膠支座等新產品的研發與應用。
建筑橡膠支座按照其用途,可分為鐵路建筑支座與公路橋板式橡膠支座按膠種適用溫度分類如下:A、氯丁橡膠:適用溫度+60℃∽-25℃天然橡膠:適用溫度+60℃∽-40℃三元乙丙橡膠:適用溫度+60℃∽-45℃板式橡膠支座適用的范圍一般來說普通板式橡膠支座適用于跨度小于30M、適合位移量較小的建筑.不同的平面形狀適用于不同的橋跨結構,正交建筑用矩形支座;曲線橋、斜交橋及圓柱墩橋用圓形支座.四氟板式橡膠支座適用于大跨度、多跨連續、簡支梁連續板等結構的大位移量建筑.它還可用作連續梁頂推及T型梁橫移中的滑塊.矩形、圓形四氟板式橡膠支座的應用非別與矩形、圓形普通板式橡膠支座相同。
2010 年 2 月 27 日,智利遭受了 8.8 級特大地震的猛烈襲擊,這場地震成為了檢驗隔震技術實際效果的 “試金石”。在此次地震中,采用橡膠隔震支座的建筑展現出了令人驚嘆的抗震性能,與未采用隔震技術的建筑形成了鮮明對比。
選用建筑支座時,必須進行綜合考量,主要因素包括:建筑跨徑與結構形式:不同跨徑和結構(梁橋、拱橋、索橋等)對支座的承載、位移、轉動能力要求各異。
橡膠支座除標高必須符合設計要求外,為確保GPZ橡膠支座的使用性能外,須保證三個方向的平面水平。橡膠支座處于建筑上、下部構造接點的重要位置,它的可靠程度直接影響建筑結構的安全度和耐久性。橡膠支座的厚度不同,所能承受的壓力也是不同的。橡膠支座的外觀質量主要是指各部件加上的外觀尺寸及其公差配合,都必須滿足有關紙及技術條件的要求。橡膠支座的性能設計指標主要是指承載能力、剛度、阻尼特性等。橡膠支座的用途多種多樣,不但是抗震的好幫手,建筑方面也少不了它的存在。橡膠支座的正確就位先使支座和支承墊石按設計要求準確就位。橡膠支座更換安裝的作用是為了在公路或建筑在受到外力沖擊時,能緩解外力對其造成的沖擊。
橡膠支座安裝時應注意如下事項A:橡膠支座中心線應與主梁中心線平行。橡膠支座安裝完后為什么要是安裝支座墊石?橡膠支座安裝以春秋季節(年平均溫度時)進行佳。橡膠支座并注意檢查5201-2硅脂是否注滿。橡膠支座產生損壞原因:橡膠支座本身材料不均勻,個別橡膠支座采用再生橡膠。橡膠支座程度動力阻尼特征,可改進建筑的整體抗震功用。
在連續梁橋的設計中,支座布置是一個至關重要的環節,它直接關系到橋梁結構的受力性能和穩定性。根據工程經驗和相關規范要求,單聯長度≤200m,跨數≤6 跨時,橋梁結構的受力狀態相對較為理想,支座的布置也相對簡單。當超過這一范圍時,就需要對固定支座位移量進行嚴格驗算。例如,某連續梁橋單聯長度達到 220m,跨數為 7 跨,在設計過程中,通過有限元分析軟件對不同工況下的固定支座位移量進行了詳細計算,發現靠近滑動支座的固定支座在溫度變化、混凝土收縮徐變以及車輛荷載等因素的綜合作用下,位移量超出了普通支座的設計允許范圍 。針對這一情況,經過結構工程師的反復論證和計算,決定在合適位置增設滑動支座,且滑動支座間距≤30m。通過增設滑動支座,有效地分擔了固定支座的位移壓力,使得橋梁結構在各種工況下的位移均能控制在安全范圍內,保證了橋梁的正常使用和結構安全 。

隔震與消能減震設計的核心優勢是 “非線性、大變形集中于隔震支座與阻尼器”,具體體現:設計聚焦:僅需優化隔震構件(支座阻尼比、水平剛度),無需復雜計算上部結構非線性響應;分析簡化:上部結構因地震作用降低(降幅 60%-80%),可按彈性變形分析,結果更可靠;修復便捷:震后僅需更換受損隔震構件,上部結構基本無損傷,降低修復成本。
目前,公路建筑,常用的橡膠支座,橡膠板橡膠支座,主盆式橡膠支座,鋼球,橡膠支座,隔震橡膠支座橡膠支座:用于鐵路建筑,鐵路建筑板式橡膠支座(乙)鍋(固定)橡膠橡膠支座,橡膠板橡膠支持:小與中小跨徑公路建筑,城市建筑盆式橡膠橡膠支座:大跨度連續梁混凝土建筑橡膠支座橡膠橡膠支座通常是直接安裝在墩頂面或鋼筋混凝土支承墊石,而梁直接設置在橡膠支座板式橡膠支座生產過程的質量控制疊層橡膠支座由多層橡膠板和多層鋼板交替平行堆疊,并通過硫化工藝制成的互相粘合,它具有結構簡單,制造容易,成本低,安裝方便,在我們的公路橋已被廣泛應用。
GB527-83硫化橡膠物理試驗方法的一般要求GB/T528-92硫化橡膠和熱塑性橡膠拉伸性能的測定GB700-88碳素結構鋼GB1033-86塑料密度和相對密度試驗方法GB/TL039-92塑料力學性能試驗方法總則GB/T1O40-92塑料拉伸性能試驗方法GB/TLL84-1996形狀和位置公差未注公差的規定GB/T1682-94硫化橡膠低溫脆性的測定——單試樣法GB/T18O4-92一般公差線性尺寸的未注公差GB2041-89黃銅板GB/T3280-92不銹鋼冷軋鋼板GB3512-83橡膠熱空氣老化試驗方法GB6031-85硫化橡膠國際硬度的測定(30一85IRHD常規試驗法)GB7233-87鑄鋼件超聲探傷及質量評級方法GB7759-87硫化橡膠在常溫和高溫下恒定形變壓縮永久變形的測定GB7762-37硫化橡膠耐臭氧老化試驗靜態拉伸試驗方法GB/T8923-88涂裝前鋼材表面銹蝕等級和除銹等級GB/11352-89一般工程用鑄造碳鋼件JB/T5943-91工程機械焊接件通用技術條件HG/T2502-935201硅脂橡膠支座鐵路建筑支座采購請到建筑支座的布置建筑支座的布置主要和建筑的結構形式有關。
一般來說,隔震建筑隔震層的抗拉能力比較薄弱,根據剪切型結構的特點,為了保證隔震結構的穩定性,確保隔震結構的抗傾覆能力及地震時有效防止上部結構與隔震層之間的脫離,應對隔震結構的高寬比加以控制。隔震結構的高寬比應滿足下表的要求。當高寬比不滿足要求時,應進行罕遇地震下的抗傾覆驗算。同時還應對非地震作用的水平荷載(如風荷載)加以限制,一般應控制非地震作用的水平荷載不超過結構總重力的10%。這樣做也可以有效保證隔震建筑的舒適性。
大型儲油罐:可以幫助減少地震對儲油罐的影響,降低潛在的安全風險。
隔震等級與初步設計:設計單位需先確定水平向減震系數,通過 “設防烈度降低一度” 的思路,以減震后的水平地震作用進行上部結構初步設計,進而明確隔震支座的規格型號。
板式橡膠支座的施工異常分析使用隔震橡膠支座能更好的防震的抗震:修建隔震橡膠支座除了自身的隔震力學功用滿意抗震描繪及運用需求外,還具有以下長處:一是修建隔震橡膠支座耐久性好,抗低周期疲憊功用、抗熱空氣老化、抗臭氧老化、耐酸性、耐水性均較好,其壽數可達80~100年,時間的隔震力學功用不會發作明顯變化,也就是說在80年之內不會影響運用,可見,與修建物具有平等壽數。
橋面連續就需設置連續縫,目前連續縫的設置不夠完善,致使連續縫破損,而產生橋面跳車。切縫后及時清除槽內瀝青混凝土及填料,鑿毛槽口內混凝土表面。切縫時應注意保持路面切口完好,無啃邊現象。青海省西寧市某高速公路建筑支座改換的根本方案如1所示。輕度損壞、部分中度損壞清理伸縮縫內沉積的垃圾和雜物,以防止頂升內梁體間互相擠壓。板式橡膠支座的厚度選擇和路基工程的特點橡膠支座的厚度不同,所能承受的壓力也是不同的。請關注隔振橡膠支座預埋板的安裝方法詳解。求出地震作用下隔震結構與非隔震結構各層層剪力之比。
FPSII-10000-300-3.48摩擦擺隔震支座
FPSII-9000-300-3.48摩擦擺隔震支座
FPSII-8000-300-3.48摩擦擺隔震支座
FPSII-7000-300-3.48摩擦擺隔震支座
FPSII-6000-300-3.48摩擦擺隔震支座
FPSII-5000-300-3.48摩擦擺隔震支座
FPSII-4000-300-3.48摩擦擺隔震支座
FPSII-3000-300-3.48摩擦擺隔震支座
FPSII-2000-300-3.48摩擦擺隔震支座
FPSII-1000-300-3.48摩擦擺隔震支座
摩擦擺隔震支座廠家
建筑摩擦擺減隔震支座24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312