地震造成的破碎不僅僅是使建筑物倒塌。烈度6或更高烈度的地震會使家具和屋內的大型固定裝置跌落或飄落,從而壓傷路上的行人。威脅隨著高度的增加而大幅上升:樓層越高,建筑在地震中震動越劇烈,對房間造成的破壞也就越嚴重。為了降低危險程度,建筑行業在過去的15年中一直在研究隔震技術,可以利用這類技術將建筑結構與地基分離,從而使建筑本身不會受到地面震動的影響。近發生地震證明了這類施工方法對高層建筑尤其有效。
建筑摩擦擺支座的隔震效果受以下因素影響:
規范的施工是確保支座正常工作的最后一道關卡。
梁體安裝或現澆階段,必須保證支座位置與標高準確,梁體與支座充分接觸、軸線一致,避免出現空隙或接觸不充分的情況 —— 此類問題稱為 “梁體支座脫空”(俗稱 “三條腿”),會導致支座受力不均、局部應力集中,嚴重影響結構穩定性。
基礎參數(補充完善):荷載等級:100kN-10000kN,覆蓋中小跨徑(≤30m)至大跨度(≤50m)結構;滑板規格:聚四氟乙烯板厚度 1.5mm-3mm(常用 2mm),表面粗糙度≤0.8μm,配套梁底不銹鋼板(厚度 2mm-3mm,鏡面拋光,Ra≤0.2μm);形狀系數:第一形狀系數 S?≥15,第二形狀系數 S?≥5,確保豎向剛度與水平變形平衡。
隔震技術(Base Isolation)通過在建筑基底或層間設置柔性隔震裝置(如橡膠支座),形成一個水平剛度較低的“柔性結構”體系,從而有效減少地震作用對上部結構的影響。鉛芯橡膠隔震支座通過內置鉛芯提高了支座的阻尼性能和初始剛度,兼具隔震與抗風振能力。
橡膠支座的老化性能豎向剛度先測定被試橡膠支座的豎向剛度、水平剛度、等效黏滯阻尼比;再將橡膠支座置于100℃的恒溫箱內185H(或相當于20℃X60年的等效溫度和等效時間)后取出,冷卻至自然室溫,再重新測定橡膠支座的豎向剛度、水平剛度、等效黏滯阻尼比及水平極限變形能力。
降低損失:通過摩擦擺支座的減震和縮短回復時間等作用,可以在自然災害中降低建筑結構的損失,減少人員傷亡。

抗扭優化:鉛芯支座優先布置在隔震層外圍,通過合理調整其位置控制結構偏心率,提升隔震結構抗扭性能;
板式支座應用范圍:目前主要普遍應用于跨徑在6米至20米之間的中小跨徑鋼筋混凝土、預應力混凝土及鋼橋。其最大設計支承反力已能達到相當高的水平。
位移與轉角需求:設計時必須精確計算由溫度變化、混凝土收縮徐變、活載等引起的水平位移和梁端轉角,確保支座的位移量和轉角能力滿足規范要求。例如,滑動型支座需明確其順橋向與橫橋向的設計位移量。
單向滑動支座同樣具備 800KN - 60000KN 的豎向承載力,轉角能力與雙向滑動支座一致,為≥0.02rad 。但在位移能力上,它主要負責單向的位移調節,范圍為 ±50 - ±200mm,這種特性使其在曲線橋以及溫差變化較大的區域發揮著重要作用,能夠針對性地滿足這些特殊結構和環境下橋梁的位移需求。
隔震支座的核心設計特點是 “水平柔性、豎向承重”,其豎向剛度顯著低于混凝土構件,具體對比需修正單位偏差并補充計算依據:
隨著新材料技術與智能監測系統的融合發展,現代橡膠支座已從單一承重構件升級為綜合防護系統。建議下一步重點開展支座性能數據庫建設,推動基于實際荷載譜的個性化設計,同時加強施工過程標準化管控,全面提升建筑結構的抗震韌性。
靜荷載或中小地震作用下,上部結構靠重力與下部基礎保持接觸。舊金山國際機場航站樓、昆明新機場航站樓。橡膠隔震支座廠家矩形、圓形四氟板式橡膠支座的安裝分別與普通板式橡膠支座相同。矩形、圓形四氟板式橡膠支座的應用非別與矩形、圓形普通板式橡膠支座相同。矩形、圓形四氟板式橡膠支座的應用分別與矩形、圓形普通板式橡膠支座相同。
脫空現象:多由安裝定位偏差、梁體傾斜或墊石不平整導致,防治核心是確保安裝時中心線對齊、梁底與墊石平行,利用底部橡膠圓環調節受力。

并于1988年制定/4公路建筑板式橡膠支座技術條件》(JT3132.288),隨后又相繼制定了《公路建筑板式橡膠支座規格系列》(JT3132.1-88)和《公路建筑板式橡膠支座力學性能檢驗規則》(JT3I32.3-90)等交通部標準.1994年修定頒布/4公路建筑板式橡膠支座標準》(JT/T4--9,后來又修訂為(JT/T4-2004)執行,為正確使用相大面積推廣應用板式橡膠支座奠定了基礎。
Ⅱ型——支座與墩、梁之間采用套筒連接,支座底面不設預埋鋼板,底鋼板和套筒之間采用錨固螺栓連接,上預埋板與頂鋼板之間采用卡榫連接,上預埋鋼板與套筒之間采用配合焊接。
隔震結構的模型應該是帶有隔震支座,非隔震結構則是去掉隔震支座的上部結構。但也有認為非隔震結構應該是將隔震結構中隔震支座換為同等水平剛度的柱子或剛度較大的柱子;抗震結構是假想結構,是不存在的,是為了采用現行規范的小震設計而人為強制等效出來的結構,事實上其變形和內力跟隔震結構都有較大的區別。注意的是,抗震結構必須保留隔震層,否則在按小震反應譜設計時,樓體的高度變了導致風荷載等計算不正確。
建筑隔震技術是現代工程結構抵御地震災害的關鍵手段之一,其核心裝置即為隔震支座。該技術通過在建筑上部結構與基礎之間設置隔震層,有效隔離或耗散地震能量,從而大幅降低結構的地震反應。觀測與試驗數據表明,采用隔震技術的建筑,其強震作用下的動力反應僅約為傳統抗震結構的1/6至1/3,能顯著提升建筑在地震中的安全性與使用功能保全能力。
地震時,上部結構置于柔性隔震層上,只做緩慢的水平運動,從而“隔離”從地面傳到上部結構的震動,大幅降低上部結構反應。大地震時結構如同處于“安全島”上,能有效保護建筑和室內物品不受損壞。這種把傳統“硬抗”方式改為“以柔克剛”的減震技術,是中華文化“以柔克剛”哲學思想在抗震減災技術上的成功運用。我們的祖先早就成功地將隔震技術運用在遍布全國的宮殿、寺廟、樓塔等建筑中,使它們在歷次大地震中得以保存下來。現代隔震技術是誕生于20世紀80年代的一項新技術,主要應用于復雜或大跨建筑、建筑、學校、醫院、住宅、重要設備和歷史文物等,有些隔震工程已經成功經受了地震的考驗。我國座隔震建筑于1980年建成。1993年建成的我國棟8層鋼筋混凝土框架橡膠支座隔震房屋,位于廣東汕頭,經受了1994年臺灣海峽3級地震的考驗。
板式橡膠支座:由多層薄鋼板與天然橡膠鑲嵌、粘合、硫化而成。可進一步細分為:
對于建筑上的橡膠支座安裝時,裝配式鋼筋混凝土簡支梁橋以T形梁橋普遍,標準跨徑為:1120M。對于上述計算模型,可以采用如2所示的建筑結構電-力類比導納分析模型進行功率流分析。對于實際轉角超出允許轉角范圍的,要單獨設計,不能直接選用。對于四氟乙烯板式橡膠支座適用于大跨度、多跨連續、簡支梁連續板等結構的大位移量建筑。對于現澆鋼筋混凝土結構應繪制節點構造詳圖(可引用標準設計、通用圖集中的詳圖)。對于橡膠硬度從十幾年的使用情況來看,以邵氏55°±5°為佳。對于斜交角較大的斜橋,由于銳角處有上翹的趨勢,應考慮設置拉橡膠支座。對于新配方和未經驗證合格的原材料,要行驗證試驗,合格后進行首件驗證,合格后再進行批量生產。對于已經成熟的配方和穩定的原材料,可直接做首件,對配方和工藝進行驗證,合格后批量生產。
橡膠支座在水平方向具有適當的柔性,能夠有效適應車輛制動力、溫度變化、混凝土收縮和徐變以及活載作用下梁體產生的水平位移,這一特性保證了結構在動態荷載下的安全性和耐久性。

橡膠支座是當前應用最廣泛的支座類型,具有良好的彈性與變形適應能力。按其構造與力學特性,主要分為板式橡膠支座與盆式橡膠支座:
橡膠支座設計應充分考慮結構的受力特點和變形需求。對于建筑支座結構工程師而言,需要重點關注建筑的結構形式和受力特性,合理選擇支座類型和參數。
偏心率控制:偏心率計算需重點考慮罕遇地震下的等效剛度,避免罕遇地震時隔震層扭轉變形過大導致支座破壞及結構連續倒塌,設防烈度作用下結構扭轉變形破壞風險較低。
自20世紀中后期起,通過在橡膠中加入鋼板或鋼筋格柵以約束其橫向膨脹,板式橡膠支座技術得到迅速發展。近年來,部分國家已開始采用計算機控制的半主動隔震系統,結合隔震與減震策略,進一步提升了結構的抗震性能。
四氟滑板橡膠支座四氟滑板橡膠支座是板式橡膠支座的一種重要變體,它在普通支座基礎上增加了聚四氟乙烯滑板。
建筑支座選型需綜合考慮八大因素,確保適配結構需求:豎向荷載:按永久荷載 + 可變荷載組合值確定支座承載力(安全系數≥1.2);水平荷載:地震、風力引起的水平力,需滿足支座水平承載力≥水平荷載 1.5 倍;位移要求:溫度變形(如橋梁年溫差 ±30℃對應位移)、地震位移,選擇 DX/SX 型號;轉動要求:梁端轉角(如簡支梁端轉角≤0.01rad),選擇高彈性橡膠支座;結構型式:斜交橋選圓形球冠支座,大跨度橋選盆式支座,小跨徑(≤10m)選普通板式支座;墩臺與上部構造尺寸:支座平面尺寸需匹配墩臺頂面積(支座邊長≤墩臺頂邊長 0.8 倍);地基與沉降:軟土地基(沉降≥50mm)選用可調高支座,便于后期高程調整;橋長:多跨連續梁(橋長>200m)需增加 SX 支座數量,避免位移集中。
材料標準:橡膠、聚四氟乙烯板、不銹鋼板、鋼件等所有部件的用料必須符合嚴格的質量要求。
落梁控制:再次落梁時,需確保在重力作用下支座上下表面相互平行,且與梁底、墩臺頂面全部密貼;兩端支座需處于同一平面,控制梁的縱向傾斜度,避免支座產生初始剪切變形。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312