四氟乙烯滑板橡膠支座:在普通板式橡膠支座頂面粘貼一層聚四氟乙烯板制成。當活動支座的預期位移量較大時,若僅依靠橡膠的剪切變形,則需要異常厚的橡膠層,這既不經濟也影響穩定性。此時,可選用四氟乙烯滑板支座,通過在梁底設置不銹鋼板與之形成低摩擦副(摩阻力極小),通過滑動來滿足大位移量的需求,實現梁體的順暢伸縮。
支點反力大?。哼@是決定支座承載等級的首要因素。
普通板式橡膠支座:適用于位移量較小的橋跨結構,是實現梁體轉角和微小位移的經濟選擇。
隔震減震技術的應用使得今后設計的建筑可以在地震時保護結構的框架和其他非結構單元,保護結構內的設施、工業設備、人等的安全,使建筑物在地震后可以繼續使用。隔震技術改變了目前的結構設計思想,可提供更多的設計方案供人們選擇。雖然這些技術尚在發展研究中.但其在工程結構上廣泛的應用前景是無庸置疑的。
耐火、抗壓橡膠支座的分析和板式橡膠支座的構造優化持續推動著支座技術進步,為提高工程結構的安全性和耐久性提供了有力保障。
支座的安裝質量是其性能得以實現的根本保證,安裝過程中的力學分析具有重要的工程實踐意義。
通用要求:支座需具備足夠的平面尺寸以支承上部結構壓力,有足夠的厚度以適應水平位移和轉角,并具有適宜的外形和結構以確保使用中不發生脫空或滑跑。
在管線設計方面,給排水、采暖主管穿越滑移層時,其設計的合理性直接影響到整個建筑系統的正常運行和抗震性能。為了確保在地震等災害發生時,這些管線不會因建筑結構的位移而受損,需采用多組橡膠減震柔性接頭。這些接頭的位移補償量必須≥隔震縫寬度 + 20% 安全裕量,這是基于對大量地震災害案例的研究和結構動力學分析得出的關鍵參數。以某高層住宅建筑為例,其隔震縫寬度為 50mm,根據上述要求,選用的橡膠減震柔性接頭位移補償量設計為 65mm,能夠有效應對地震時可能產生的水平位移 。同時,接頭采用法蘭連接方式,這種連接方式具有良好的密封性和穩定性,能夠確保在管道內部壓力變化和外部震動的情況下,依然保持可靠的連接 。此外,為了防止接頭在地震時發生過度位移而導致損壞,還配置了限位裝置,限位裝置通過精確的力學計算和設計,能夠在地震位移達到一定程度時,限制接頭的進一步位移,從而保護整個管線系統的安全,確保在地震期間給排水、采暖等基本生活設施的正常運行 。

硫化工藝要求:不同規格的橡膠支座需匹配對應的硫化時間與溫度,若硫化不充分,會導致橡膠內部 “夾生”,嚴重影響產品強度、彈性及耐久性,生產過程中需嚴格遵循工藝標準。
摩擦擺隔震支座通常由上部結構連接板、球面滑動層、摩擦材料、復位裝置和下部結構連接板等部分組成。當地震發生時,上部結構相對于下部結構產生水平位移,球面滑動層開始滑動,摩擦材料產生摩擦力,消耗地震能量。同時,復位裝置提供恢復力,使上部結構在地震后能夠恢復到原來位置。
近幾年,發作地震狀況對比多,對此,在修建構造計劃上的抗震功能請求較高。經過進步修建物的抗震性和修建施工的進程采納一些隔震減震的辦法,能很好地削減修建物在地震中遭到損壞的程度。這篇文章對修建構造計劃中運用隔震減震辦法的研究具有必定的理論含義和現實含義。
近年來,橡膠支座施工技術逐漸成熟,在減震和抗大變形量等方面極大地提高了建筑的結構安全性。近年來,也有用特殊的高強度專用灌注膠進行脫空橡膠支座的修補,但耐久性和腐蝕性還有待驗證。經檢查符合質量要求后方可將錨環鋼筋與預埋鋼筋焊牢,之后,即可拆除XF型建筑伸縮縫的裝配夾具。經實驗能夠保證質量亦可選用對接焊接,但均不得選用手工電弧焊。
同時,劇縫時要注意必須將瀝青混凝土路面切透,以防止開槽時,縫外瀝青混凝土的松動。同時,所有板式橡膠支座,在小豎向荷載作用下,都應保證支座本身不得有任何滑移現象。同時,橡膠支座的厚度要能適應梁體轉角的需要。同時,橡膠支座對建筑變形的約束應盡可能小,以便能夠讓梁體自由伸縮及轉動。同時,支座的厚度要能適應梁體轉角的需要。同時,支座的厚度也應能適應梁體轉角的需要。同時還配以抗震擋塊,防止梁板左右移位,擋塊位于蓋梁兩側外端,它從兩端把梁板穩穩卡在蓋梁上。同時還要考慮溫度因素,以提高橡膠支座自身轉動性能。同時具有良好的防震作用,可減少動載對橋跨結構與橋墩的沖擊作用。同時橡膠支座具有較大的水平剪切變形能力,以滿足上部結構對建筑支座要求的使用功能。同時要求在罕遇地震作用下的極限承載力狀態下,豎向壓應力一律不得超過30MPA,避免支座被壓壞。同時也適用于建筑構件拼裝接縫,盾構法隧道管片接縫,接縫的嵌縫,板縫墻縫的止水。
支座偏壓會使支座局部受力過大,加速支座的損壞,降低支座的使用壽命。墊石標高偏差>3mm 是導致支座偏壓的主要原因之一,當墊石的標高不符合設計要求時,會使支座在安裝后處于傾斜狀態,從而導致受力不均 。對于這種情況,可通過增設楔形鋼板(厚度≤5mm)進行調平,楔形鋼板的設置能夠有效地調整支座的水平度,使其均勻受力。調平后,需重新進行灌漿,確保支座與墊石之間的連接牢固可靠 。
隨著建筑行業對抗震性能、結構穩定性要求的不斷提升,橡膠支座的防震效果升級已成為行業發展的重要趨勢。類似大連市地震綜合觀測基地等重點工程的建設,也進一步推動了橡膠支座在隔震領域的應用與技術革新,促使行業不斷優化產品性能,以滿足更高標準的工程需求。對于剛接觸該行業的從業者而言,全面掌握橡膠支座的類型特性、安裝規范與質量控制要點,是保障工程安全的關鍵前提。
彈性反應譜方法之所以得到普遍采用,一方面是因為施工時計算的相對簡單,另一方面是因為它和現有的規范計算方法很接近,這樣便易于接受,后應當引起注意的是眾所周知隔震裝置的等效剛度和等效阻尼的計算是與隔震裝置在地震中的大變形程度有關的,繼而隔震裝置的變形又與整個建筑的地震響應程度有關系,所以客觀上要求我們對于采用彈性反應譜方法進行的隔震設計應當是一個不斷完善和變化的過程。

支座的正確安裝、更換及與整體結構的協調是保證其長期正常工作的關鍵環節。
圓形球冠橡膠支座專為異形結構設計,分為兩類:球冠圓板式支座:通過橡膠球冠調整受力方向,適應坡梁、曲梁的轉角需求,豎向剛度穩定;聚四氟乙烯球冠圓板式支座:在球冠表面粘覆 PTFE 板,兼具轉角與水平滑移功能,適用于大位移 + 大轉角的復雜場景(如互通式立交橋)。
固定橡膠支座的應按如下要求布置:在坡道上,設在較低一端;在車站附近,設在靠近車站一端;在區間平道上,設在重車方向的前端;當出現重疊的狀況的時候,應該滿足坡道上的要求,特殊情況,不許將相鄰兩孔的固定橡膠支座設在同一個橋墩上。
隔震特性:隔震裝置具有可變的水平剛度特性,在強風或微小地震時(F≤F,具有足夠的水平剛度K1,上部結構水平位移極小,不影響使用要求;在中強地震發生時,(F>F,其水平剛度K2較小,上部結構水平滑動,使“剛性”的抗震結構體系變為“柔性”的隔震結構體系,其自振周期大大延長(例如TS=2~4S),遠離上部結構的自振周期(TS=0.3~1.2S)和場地特征周期(TG=0.2~0S),從而把地面震動有救地隔開,明顯地降低上部結構的地震反應,可使上部結構的加速度反應(或地震作用)降低為傳統結構加速度反應的1/4~1/12。并且,由于隔震裝置的水平剛度遠遠小于上部結構的層間水平剛度,所以,上部結構在地震中的水平變形,從傳統抗震結構的“放大晃動型”變為隔震結構的“整體平動型’,從激烈的、由下到上不斷放大的晃動變為只作長周期的、緩慢的、整體水平平動.從有較大的層間變位變為只有很微小的層間變位,斟而上部結構在強地震中仍處于彈性狀態。這樣,既能保護結構本身.也能保護結構內部的裝飾、精密設備儀器等不遭任何損壞,確保建筑結構物和生命財產在強地震中的安全。
JT/T4一2004公路建筑板式橡膠支座JTGD60一2004公路橋涵設計通用規范JTGD62一2004公路鋼筋混凝土及預應力混凝土橋涵設計規范GZJF4橡膠支座要求3.1支座產品分類、代號、結構、技術要求、試驗方法、檢驗規則及標志、包裝、貯存、運輸、安裝和養護均應滿足JT/T4一2004的要求.3.1支座橡膠彈性體體積模量EB=2000MPA。
在公路建筑設計中,基于橡膠支座的構造特點和分類,科學地進行支座尺寸計算與規格型號的選定是至關重要的環節。這直接關系到支座能否在設計壽命內正常發揮功能。計算需綜合考慮支座的設計承載力、預期位移量、轉角要求以及環境因素等。
建筑隔震橡膠支座通過在建筑基礎與上部結構之間設置柔性隔震層,有效延長結構的基本周期,避開地震動的主要頻帶范圍,從而顯著降低地震能量的輸入。支座不僅具備豎向承載力大、抗拉力強的特點,還具有優異的彈性復位功能和萬向位移能力,實現"小震不壞、中震不壞或輕度不壞、大震不喪失使用功能"的抗震設防目標。
隔震層的偏心:指上部結構的質心與隔震層隔震支座的剛心不重合,這對隔震層端部的隔震支座的水平變形影響很大,當偏心很大時,結構角部的隔震支座可能產生較大的水平位移,甚至超出限位控制,而此時中部某些隔震支座變形很小,整體隔震不合理。對于相同的偏心矩和偏心率,由于隔震層平面形狀、隔震支座位置、非線性特性引起的扭轉振動也不相同。即使在彈性設計時,不存在偏心,但在高壓力下,特別是第二形狀系數較小的小型疊層橡膠支座的剛度會降低;地震時摩擦支座的摩擦力與軸力相關;鉛芯橡膠支座、阻尼器等會因為制作安裝上的誤差導致剛度的變化等,偏心是難以避免的。

安裝、施工與驗收規范預安裝檢查:在支座運抵現場安裝前,應開箱核對配件清單、產品合格證、型式檢驗報告以及支座安裝養護細則等技術文件。施工單位在開箱后,不得隨意拆卸、轉動支座的連接螺栓。
板式橡膠伸縮縫在應用過程中出現上述缺陷主要由以下原因造成:螺栓連接是板式橡膠伸縮縫的薄弱環節。板式橡膠支座、益式橡膠支座和球型支座都可以做成拉壓支座的形式。板式橡膠支座:板式橡膠支座是僅用一塊橡膠板做成的適用于中、小跨度建筑的一種簡單的橡膠支座。板式橡膠支座30817個,發現剪切變形327個,支座脫空或局部脫空573個,支座缺失3個。板式橡膠支座安裝的技術要求模板與鋼筋安裝工作應配合進行,鋼筋安裝完畢后安設。板式橡膠支座材質對準擦系數的影響板式橡膠支座與對摩件的滓擦系數隨材質而異。板式橡膠支座從結構上分為普通板式橡膠支座和四氟板式橡膠支座。板式橡膠支座從形狀上分為矩形和圓形。板式橡膠支座的安裝時需參考支座的適用反力,一般大于2MN的反力,采用盆式橡膠支座較為經濟。板式橡膠支座的產品的尺寸允許誤差按表3中外部項目要求,規定。板式橡膠支座的初始剪切變形,主要有以下兩種:板式橡膠支座順橋向剪切;板式橡膠支座橫橋向剪切。
對于關鍵連接部位,如梁板與蓋梁的連接區域,可考慮采用性能更高的阻尼支座產品。這類支座能夠有效限制梁體縱向位移,在地震作用下通過適度變形耗散能量,提升結構整體抗震性能。
取出舊支座前應拍照記錄其缺陷狀況。取出梁體與擋板間木板,清理施工廢物及垃圾。去除附著在(預埋板上面之混凝土塊及垃圾等異物。全國早使用板式橡膠支座的是廣東肇慶的公路橋,至今已有25年的使用歷史。缺膠面積不超過150MM2,不得多于2處且內部嵌件確保在地震來臨時,會商綜合樓的地震觀測、緊急會商、應急指揮等功能運轉正常。確認螺栓完全插入后,將本體放置在下預埋板上。然而,橡膠支座,特別應用普遍的板式橡膠支座在使用中仍存在一些質量問題,需要引起建設者充分的重視。
2010 年 2 月 27 日,智利遭受了 8.8 級特大地震的猛烈襲擊,這場地震成為了檢驗隔震技術實際效果的 “試金石”。在此次地震中,采用橡膠隔震支座的建筑展現出了令人驚嘆的抗震性能,與未采用隔震技術的建筑形成了鮮明對比。
另一種常見價格較低的由建筑板式橡膠支座衍生品種:板式橡膠拉壓支座,板式拉壓橡膠支座是在橡膠支座的中心設一根拉力螺栓,將支座頂板和下滑板聯接在一起.支座下滑板和底板及錨固定架板之間設不銹鋼板和聚四氟乙烯滑板,以使支座可以縱向滑動。
基礎隔震(主流形式):隔震層設于基礎與上部結構之間,通過橡膠支座 + 阻尼裝置吸收地震能量,適用于多數建筑(如云南公共建筑)。
四氟板式橡膠支座的滑動性能依賴于聚四氟乙烯板(PTFE)與不銹鋼板的配合,其摩阻系數需通過潤滑措施精準控制:常溫型活動支座(適用于環境溫度 0℃以上):加入 5201 硅脂潤滑后,設計摩阻系數≤0.03,確保支座在溫度伸縮、荷載變化時能順暢滑動;耐寒型活動支座(適用于低溫環境):同樣采用 5201 硅脂潤滑,設計摩阻系數≤0.06,需通過材料改性保證低溫下硅脂的潤滑效果,避免摩擦阻力驟增。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312